The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Andreas Wacker. Photo: Kennet Ruona

Andreas Wacker

Professor

Portrait of Andreas Wacker. Photo: Kennet Ruona

Coherent transport through an interacting double quantum dot: Beyond sequential tunneling

Author

  • Jonas Pedersen
  • Benny Lassen
  • Andreas Wacker
  • Matthias H. Hettler

Summary, in English

Various causes for negative differential conductance in transport through an interacting double quantum dot are investigated. Particular focus is given to the interplay between the renormalization of the energy levels due to the coupling to the leads and the decoherence of the states. The calculations are performed within a basis of many-particle eigenstates and we consider the dynamics given by the von Neumann equation taking into account also processes beyond sequential tunneling. A systematic comparison between the levels of approximation and also with different formalisms is performed. It is found that the current is qualitatively well described by sequential processes as long as the temperature is larger than the level broadening induced by the contacts.

Department/s

  • Mathematical Physics

Publishing year

2007

Language

English

Pages

1-235314

Publication/Series

Physical Review B (Condensed Matter and Materials Physics)

Volume

75

Issue

23

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics

Status

Published

Research group

  • Linne Center for Nanoscience and Quantum Engineering

ISBN/ISSN/Other

  • ISSN: 1098-0121