
Anne l'Huillier
Professor

Secondary electron imaging of nanostructures using Extreme Ultra-Violet attosecond pulse trains and Infra-Red femtosecond pulses
Author
Summary, in English
Surface electron dynamics unfold at time and length scales down to attoseconds and nanometres, making direct imaging with extreme spatiotemporal resolution highly desirable. However, this has turned out to be a major challenge even with the advent of reliable attosecond light sources. In this paper, photoelectrons from Ag nanowires and nanoparticles excited by extreme ultraviolet (XUV) attosecond pulse trains and infrared femtosecond pulses using a PhotoEmission Electron Microscope (PEEM) are imaged. In addition, the samples were investigated using Scanning Electron Microscopy (SEM) and synchrotron based X-ray photoelectron spectroscopy (XPS). To achieve contrast between the nanostructures and the substrate in the XUV images, three different substrate materials were investigated: Cr, ITO and Au. While plasmonic field enhancement can be observed on all three substrates, only on Au substrates do the Ag nanowires appear significantly brighter than the substrate in XUV-PEEM imaging. 3-photon photoemission imaging of plasmonic hot-spots was performed where the autocorrelation trace is observed in the interference signal between two femtosecond Infra-Red (IR) beams with sub-cycle precision. Finally, using Monte Carlo simulations, it is shown how the secondary electrons imaged in the XUV PEEM can potentially reveal information on the attosecond time scale from the near surface region of the nanostructures.
Department/s
- Synchrotron Radiation Research
- Atomic Physics
- Solid State Physics
- NanoLund: Center for Nanoscience
Publishing year
2013
Language
English
Pages
162-170
Publication/Series
Annalen der Physik
Volume
525
Issue
1-2
Document type
Journal article
Publisher
John Wiley & Sons Inc.
Topic
- Atom and Molecular Physics and Optics
Keywords
- PEEM
- attosecond
- nanostructure
- PhotoEmission
- microscopy
- XUV
- IR
Status
Published
ISBN/ISSN/Other
- ISSN: 0003-3804