Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anne L'Huillier

Anne l'Huillier

Professor

Anne L'Huillier

Theory of high-harmonic generation by low-frequency laser fields

Author

  • Maciej Lewenstein
  • Ph Balcou
  • M. Yu Ivanov
  • Anne L'Huillier
  • P. B. Corkum

Summary, in English

We present a simple, analytic, and fully quantum theory of high-harmonic generation by low-frequency laser fields. The theory recovers the classical interpretation of Kulander et al. in Proceedings of the SILAP III Works hop, edited by B. Piraux (Plenum, New York, 1993) and Corkum [Phys. Rev. Lett. 71, 1994 (1993)] and clearly explains why the single-atom harmonic-generation spectra fall off at an energy approximately equal to the ionization energy plus about three times the oscillation energy of a free electron in the field. The theory is valid for arbitrary atomic potentials and can be generalized to describe laser fields of arbitrary ellipticity and spectrum. We discuss the role of atomic dipole matrix elements, electron rescattering processes, and of depletion of the ground state. We present the exact quantum-mechanical formula for the harmonic cutoff that differs from the phenomenological law Ip+3.17Up, where Ip is the atomic ionization potential and Up is the ponderomotive energy, due to the account for quantum tunneling and diffusion effects.

Publishing year

1994-03

Language

English

Pages

2117-2132

Publication/Series

Physical Review A

Volume

49

Issue

3

Document type

Journal article

Publisher

American Physical Society

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1050-2947