
Anne l'Huillier
Professor

Spatiotemporal coupling of attosecond pulses
Author
Summary, in English
Attosecond pulses in the extreme ultraviolet (XUV) spectral range are today routinely generated via high-order harmonic generation (HHG), when intense ultrashort laser pulses are focused into a gaseous generation medium. The effect is most easily understood in a semi-classical picture [1]. An electron can tunnel ionize from the distorted atomic potential, pick up kinetic energy in the laser field, potentially return to its parent ion and recombine. The excess energy is emitted as XUV photon. The process repeats for every half-cycle of the driving field, resulting in a train of attosecond pulses and in the frequency domain in the well-known, odd-order comb of harmonics. Two main families of electron trajectories leading to the same photon energy can be distinguished into 'short' and 'long', according to their time of travel in the continuum. Due to the complicated nature of the HHG process, attosecond pulses usually cannot be separated into their temporal and spatial profiles, but instead have strong chromatic aberration and are spatio-temporally coupled [2-4].
Department/s
- Atomic Physics
- NanoLund: Center for Nanoscience
- MAX IV Laboratory
Publishing year
2019
Language
English
Publication/Series
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Links
Document type
Conference paper
Publisher
IEEE - Institute of Electrical and Electronics Engineers Inc.
Topic
- Atom and Molecular Physics and Optics
Conference name
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Conference date
2019-06-23 - 2019-06-27
Conference place
Munich, Germany
Status
Published
ISBN/ISSN/Other
- ISBN: 9781728104690