The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Arkady Yartsev. Photo: Kennet Ruona

Arkady Yartsev


Portrait of Arkady Yartsev. Photo: Kennet Ruona

Dynamics of Excited States of the Carotenoid Peridinin in Polar Solvents: Dependence on Excitation Wavelength, Viscosity, and Temperature.


  • Donatas Zigmantas
  • R G Hiller
  • Arkady Yartsev
  • Villy Sundström
  • Tomas Polivka

Summary, in English

The dynamics of the excited states of the carotenoid peridinin in polar solvents were studied using femtosecond transient absorption spectroscopy in the spectral range of 500-1900 nm. A broadening of the absorption spectrum in polar solvents is caused by a distribution of conformers having different ground-state properties. In addition, the dependence of the peridinin lifetime on the excitation wavelength reveals that two peridinin forms coexist in protic solvents, where a "red"-absorbing form is produced by hydrogen bonding via the carbonyl group. The observed dynamics show that the S1 and intramolecular charge transfer (ICT) states of peridinin are strongly coupled, forming a collective S1/ICT state whose lifetime is determined by the degree of ICT character. In nonpolar solvent, pure S1 character with a lifetime of ~160 ps is observed, whereas in polar solvents an increase in the ICT character leads to a lifetime as short as 10 ps in methanol and 13 ps in ethylene glycol. In protic solvents, the ICT character of the S1/ICT state of the red peridinin form is further enhanced by hydrogen bonding, resulting in lifetimes shorter than 6 ps. A weak dependence of peridinin dynamics on viscosity shows that the ICT state is not formed via a twisted ICT mechanism. At 190 K in methanol, a significant increase in the S1/ICT lifetime is observed, suggesting that thermal coupling is involved in the S1/ICT state mixing. At 77 K in ethylene glycol glass, a multiexponential decay is revealed, indicating the presence of several conformers with different S1/ICT state properties.


  • Chemical Physics

Publishing year







The Journal of Physical Chemistry Part B





Document type

Journal article


The American Chemical Society (ACS)


  • Atom and Molecular Physics and Optics




  • ISSN: 1520-5207