The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Arkady Yartsev. Photo: Kennet Ruona

Arkady Yartsev

Researcher

Portrait of Arkady Yartsev. Photo: Kennet Ruona

Electron transfer from the singlet and triplet excited states of Ru(dcbpy)(2)(NCS)(2) into nanocrystalline TiO2 thin films

Author

  • Jani Kallioinen
  • Gabor Benko
  • Villy Sundström
  • Jouko E I Korppi-Tommola
  • Arkady Yartsev

Summary, in English

Time-resolved absorption spectroscopy was used to study the femtosecond and picosecond time scale electron injection from the excited singlet and triplet states of Ru(dcbpY)(2)(NCS)(2) (RuN3) into titanium dioxide (TiO2) nanocrystalline particle film in acetonitrile. The fastest resolved time constant of similar to30 fs was shown to reflect a sum of two parallel ultrafast processes, nonergodic electron transfer (ET) from the initially excited singlet state of RuN3 to the conduction band of TiO2 and intersystem crossing (ISC). The branching ratio of 1.5 between the two competing processes gives rate constants of 1/50 fs(-1) for ET and 1/75 fs(-1) for ISC. Following the ultrafast processes, a minor part of the electron injection (40%) occurs from the thermalized triplet state of RuN3 on the picosecond time scale. The kinetics of this slower phase of electron injection is nonexponential and can be fitted with time constants ranging from similar to1 to similar to60 ps.

Department/s

  • Chemical Physics

Publishing year

2002

Language

English

Pages

4396-4404

Publication/Series

The Journal of Physical Chemistry Part B

Volume

106

Issue

17

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5207