The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Arkady Yartsev. Photo: Kennet Ruona

Arkady Yartsev


Portrait of Arkady Yartsev. Photo: Kennet Ruona

The excited-state chemistry of protochlorophyllide a: A time-resolved fluorescence study


  • Benjamin Dietzek
  • Wolfgang Kiefer
  • Arkady Yartsev
  • Villy Sundström
  • Peter Schellenberg
  • Paulius Grigaravicius
  • Gudrun Hermann
  • Jurgen Popp
  • Michael Schmitt

Summary, in English

The excited-state processes of protochlorophyllide a, the precursor of chlorophyll a in chlorophyll biosynthesis, are studied using picosecond time-resolved fluorescence spectroscopy. Following excitation into the Soret band, two distinct fluorescence components, with emission maxima at 640 and 647 nm, ore observed. The 640 nm emitting component appears within the time resolution of the experiment and then decays with a time constant of 27 ps. In contrast, the 647 nm emitting component is built up with a 3.5 ps rise time and undergoes a subsequent decay with a time constant of 3.5 ns. The 3.5 ps rise kinetics are attributed to relaxations in the electronically excited state preceding the nanosecond fluorescence, which is ascribed to emission out of the thermally equilibrated S, state. The 27 ps fluorescence, which appears within the experimental response of the streak camera, is suggested to originate from a second minimum on the excited-state potentiol-energy surface. The population of the secondary excited state is suggested to reflect a very fast motion out of the Franck-Condon region along a reaction coordinate different from the one connecting the Franck-Condon region with the S-1 potential-energy minimum. The 27 ps-component is an emissive intermediate on the reactive excited-state pathway, as its decay yields the intermediate photoproduct, which has been identified previously (J. Phys. Chem. B 2006, 110, 4399-4406). No emission of the photoproduct is observed. The results of the time-resolved fluorescence study allow a detailed spectral characterization of the emission of the excited states in protochlorophyllide a, and the refinement of the kinetic model deduced from ultrafast absorption measurements.


  • Chemical Physics

Publishing year












Document type

Journal article


John Wiley & Sons Inc.


  • Atom and Molecular Physics and Optics


  • time-resolved spectroscopy
  • porphyrins
  • photochemistry
  • femtochemistry
  • fluorescence spectroscopy




  • ISSN: 1439-7641