The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Arkady Yartsev. Photo: Kennet Ruona

Arkady Yartsev

Researcher

Portrait of Arkady Yartsev. Photo: Kennet Ruona

The electronic states of polyfluorene copolymers with alternating donor-acceptor units

Author

  • Kim Jespersen
  • Wichard Beenken
  • Yuri Zausjitsyn
  • Arkady Yartsev
  • Mats Andersson
  • Tönu Pullerits
  • Villy Sundström

Summary, in English

We calculate the electronic states of the low bandgap polyfluorene-based copolymer DiO-PFDTBT, which consists of alternating 9,9-dioctyl-9H-fluorene and 4,7-di-thiophen-2-ylbenzo[1,2,5]thiadiazole (TBT) units, and compare with the steady-state absorption, emission, and excitation spectrum. Using the semiempirical quantum-chemical (ZINDO) method we can assign the characteristic bands of the "camel-back" absorption spectrum to one charge transfer state at lower energy localized on the TBT unit, and one delocalized excitonic state at higher energy corresponding to the -conjugated electron system. Additional "dark" charge transfer states in the gap between these bands have been revealed. Calculations are also made on the red light emitting polyfluorene-based copolymer poly(fluorene-co-benzothiadiazole) (F8BT), which contains benzo[1,2,5]thiadiazole instead of TBT. The nature of the electronic states in F8BT and DiO-PFDTBT are found to be qualitatively the same. ©2004 American Institute of Physics.

Department/s

  • Chemical Physics

Publishing year

2004

Language

English

Pages

12613-12617

Publication/Series

Journal of Chemical Physics

Volume

121

Issue

24

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0021-9606