
Axel Eriksson
Associate senior lecturer

Physicochemical properties and atmospheric ageing of soot - investigated though aerosol mass spectrometry
Author
Summary, in English
– is uniquely challenging to characterize. To meet this challenge, I have deployed a Soot-Particle Aerosol Mass Spectrometer (SP-AMS) to elucidate the physicochemical properties and atmospheric ageing processes of soot particles. The sources under investigation were appliances for residential heating, and light-duty vehicles.
Wood combustion emissions of particulate polyaromatic hydrocarbons (PAHs) are strongly dependent on combustion intensity: intense combustion results in oxygen deficiency in the appliance, which favors PAH emission. While most (>90%) of the particulate PAH mass was C24 or smaller, the observed distributions continued up to C48, with exponentially decreasing abundances. Excessively intense combustion also results in elevated emissions of secondary organic aerosol (SOA) precursors and soot. Contrary to expectations, the absorption Ångström exponent of the soot emitted was found to be fairly insensitive to photochemical processing, and similar to that of diesel exhaust particles.
Exhausts from gasoline powered light-duty vehicles were shown to readily form secondary organic aerosol (SOA). Roughly half of the SOA mass formed could be explained from reaction products of C6-C9 aromatics, which are known SOA precursors. The SOA had a similar elemental composition, volatility and density as the SOA formed by
such precursors alone. The diesel exhaust particles were found to exhibit progressively enhanced hygroscopicity with photochemical processing due to the condensation of water-soluble material. The process of SOA condensation induced irreversible soot restructuring which was substantially accelerated by water uptake under humid (RH90)
conditions.
The diesel particles observed in urban air were similar to the particles investigated in the laboratory in terms of size, shape, and mass spectral signature. Pure carbon ions as well as ions containing carbon and oxygen were unambiguously assigned to the refractory soot cores, in both laboratory and ambient air. In roughly five hours, highly aspherical, lightly coated, and hydrophobic fresh diesel exhaust particles were found to have aged into near spherical, more coated, and by inference hygroscopic accumulation mode particles. The transformation occurred under cold and humid conditions, despite limited photochemistry. Coupled ammonium nitrate and liquid water condensation was identified as the main cause of the transformation.
The processes controlling soot emission and transformation are elusive. Understanding has been impeded, despite considerable attention from the scientific community, by two inherent soot properties: stability and irregular shape. The same properties were exploited here, using state-of-the-art instrumentation to measure the physicochemical properties and atmospheric transformation of soot particles.
Department/s
- Nuclear physics
- MERGE: ModElling the Regional and Global Earth system
Publishing year
2015
Language
Swedish
Full text
Document type
Dissertation
Topic
- Subatomic Physics
Keywords
- Black carbon
- soot
- vehicle exhausts
- wood stove emissions
- atmospheric processing
- SP-AMS
Status
Published
Research group
- Aerosol, Nuclear Physics
Supervisor
- Erik Swietlicki
- Joakim Pagels
ISBN/ISSN/Other
- ISBN: 978-91-7623-370-2
Defence date
12 June 2015
Defence time
10:15
Defence place
Rydbergssalen, Fysiska instutitionen, Professorsgatan 1, Lund University, Faculty of Engineering, LTH.
Opponent
- Jay Slowik (Dr.)