Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Erik Lind; Photo: Kennet Ruona

Erik Lind

Professor, Coordinator Nanoelectronics & Nanophotonics

Portrait of Erik Lind; Photo: Kennet Ruona

Ballistic modeling of InAs nanowire transistors

Author

  • Kristofer Jansson
  • Erik Lind
  • Lars-Erik Wernersson

Summary, in English

In this work, the intrinsic performance of InAs nanowire transistors is evaluated in the ballistic limit. A self-consistent Schrodinger-Poisson solver is utilized in the cylindrical geometry, while accounting for conduction band non-parabolicity. The transistor characteristics are derived from simulations of ballistic transport within the nanowire. Using this approach, the performance is calculated for a continuous range of nanowire diameters and the transport properties are mapped. A transconductance exceeding 4 S/mm is predicted at a gate overdrive of 0.5 V and it is shown that the performance is improved with scaling. Furthermore, the influence from including self-consistency and non-parabolicity in the band structure simulations is quantified. It is demonstrated that the effective mass approximation underestimates the transistor performance due to the highly non-parabolic conduction band in InAs. Neglecting self-consistency severely overestimates the device performance, especially for thick nanowires. The error introduced by both of these approximations gets increasingly worse under high bias conditions. (C) 2015 Elsevier Ltd. All rights reserved.

Department/s

  • Department of Electrical and Information Technology
  • NanoLund

Publishing year

2016

Language

English

Pages

47-53

Publication/Series

Solid-State Electronics

Volume

115

Document type

Journal article

Publisher

Elsevier

Topic

  • Other Electrical Engineering, Electronic Engineering, Information Engineering

Keywords

  • Nanowire
  • MOSFET
  • InAs
  • Ballistic
  • Modeling

Status

Published

ISBN/ISSN/Other

  • ISSN: 0038-1101