Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait photo of Gerda Rentschler

Gerda Rentschler

Project Coordinator

Portrait photo of Gerda Rentschler

ATP13A2 (PARK9) polymorphisms influence the neurotoxic effects of manganese.


  • Gerda Rentschler
  • Loredana Covolo
  • Amelia Ahmadi Haddad
  • Roberto G Lucchini
  • Silvia Zoni
  • Karin Broberg Palmgren

Summary, in English

INTRODUCTION: A higher prevalence of individuals affected by Parkinsonism was found in Valcamonica, Italy. This may be related to ferro-alloy smelters in the area, releasing manganese (Mn) in the air, soil and water for about a century. There exists individual susceptibility for Mn neurotoxicity. AIM: To analyse how polymorphism in genes regulating Mn metabolism and toxicity can modify neurophysiological effects of Mn exposure. MATERIALS AND METHODS: Elderly (N=255) and adolescents (N=311) from Northern Italy were examined for neuromotor and olfactory functions. Exposure to Mn was assessed in blood and urine by atomic absorption spectroscopy and in soil by a portable instrument based on X-Ray fluorescence technology. Polymorphisms in the Parkinson-related gene ATPase type 13A2 (ATP13A2, also called PARK9: rs3738815, rs2076602, rs4920608, rs2871776 and rs2076600), and in the secretory pathway Ca(2+)/Mn(2+) ATPase isoform 1 gene (SPCA1: rs218498, rs3773814 and rs2669858) were analysed by TaqMan probes. RESULTS: For both adolescents and elderly, negative correlations between Mn in soil and motor coordination (R(s)=-0.20, p<0.001; R(s)=-0.13, p=0.05, respectively) were demonstrated. Also among adolescents, negative correlations were seen between Mn in soil with odor identification (R(s)=-0.17, p<0.01). No associations were seen for Mn in blood or urine. ATP13A2 polymorphisms rs4920608 and rs2871776 significantly modified the effects of Mn exposure on impaired motor coordination in elderly (p for interaction=0.029, p=0.041, respectively), also after adjustments for age and gender. The rs2871776 altered a binding site for transcription factor insulinoma-associated 1. CONCLUSIONS: ATP13A2 variation may be a risk marker for neurotoxic effects of Mn in humans.


  • Division of Occupational and Environmental Medicine, Lund University

Publishing year












Document type

Journal article




  • Environmental Health and Occupational Health




  • ISSN: 1872-9711