
Heiner Linke
Professor, Deputy dean (prorektor) at Faculty of Engineering, LTH

Nonlinear thermovoltage and thermocurrent in quantum dots
Author
Summary, in English
Quantum dots are model systems for quantum thermoelectric behavior because of their ability to control and measure the effects of electron-energy filtering and quantum confinement on thermoelectric properties. Interestingly, nonlinear thermoelectric properties of such small systems can modify the efficiency of thermoelectric power conversion. Using quantum dots embedded in semiconductor nanowires, we measure thermovoltage and thermocurrent that are strongly nonlinear in the applied thermal bias. We show that most of the observed nonlinear effects can be understood in terms of a renormalization of the quantum-dot energy levels as a function of applied thermal bias and provide a theoretical model of the nonlinear thermovoltage taking renormalization into account. Furthermore, we propose a theory that explains a possible source of the observed, pronounced renormalization effect by the melting of Kondo correlations in the mixed-valence regime. The ability to control nonlinear thermoelectric behavior expands the range in which quantum thermoelectric effects may be used for efficient energy conversion.
Department/s
- Solid State Physics
- NanoLund: Center for Nanoscience
Publishing year
2013
Language
English
Publication/Series
New Journal of Physics
Volume
15
Document type
Journal article
Publisher
IOP Publishing
Topic
- Nano Technology
- Condensed Matter Physics
Status
Published
ISBN/ISSN/Other
- ISSN: 1367-2630