Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Ivan Maximov. Photo: Kennet Ruona

Ivan Maximov

Associate Professor, Coordinator Exploratory Nanotechnology

Portrait of Ivan Maximov. Photo: Kennet Ruona

Nanometer-scale two-terminal semiconductor memory operating at room temperature

Author

  • Aimin Song
  • M Missous
  • Pär Omling
  • Ivan Maximov
  • Werner Seifert
  • Lars Samuelson

Summary, in English

Based on a nanometer-scale semiconductor channel with an intentionally broken geometric symmetry, we have realized a type of memory device that consists of only two terminals, rather than the minimum of three terminals in conventional semiconductor memories. The charge retention time is at least 10 h at cryogenic temperatures and a few minutes at room temperature. Furthermore, the simplicity of the design allows the active part of the devices to be made in a single nanolithography step which, along with the planar structure of the device, provides promising possibilities for a high integration density. (C) 2005 American Institute of Physics.

Department/s

  • Solid State Physics

Publishing year

2005

Language

English

Publication/Series

Applied Physics Letters

Volume

86

Issue

4

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0003-6951