The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Jakob Löndahl

Jakob Löndahl

Associate Professor / Senior Lecturer

Jakob Löndahl

Aerosol exposure versus aerosol cooling of climate: what is the optimal emission reduction strategy for human health?


  • Jakob Löndahl
  • Erik Swietlicki
  • E. Lindgren
  • S. Loft

Summary, in English

Particles, climate change, and health have thought-provoking interactions. Air pollution is one of the largest environmental problems concerning human health. On the other hand, aerosol particles can have a cooling effect on climate and a reduction of those emissions may result in an increased temperature globally, which in turn may have negative health effects. The objective of this work was to investigate the "total health effects" of aerosol emissions, which include both exposure to particles and consequences for climate change initiated by particles. As a case study the "total health effect" from ship emissions was derived by subtracting the number of deaths caused by exposure with the estimated number of lives saved from the cooling effect of the emissions. The analysis showed that, with current level of scientific understanding, it could not be determined whether ship emissions are negative or positive for human health on a short time scale. This first attempt to approximate the combined effect of particle emissions on health shows that reductions of particulate air pollution will in some cases (black carbon) have win-win effects on health and climate, but sometimes also cause a shift from particle exposure-related health effects towards an increasing risk of health consequences from climate change. Thus, measures to reduce aerosol emissions have to be coupled with climate change mitigation actions to achieve a full health benefit on a global level.


  • Nuclear physics
  • NanoLund: Center for Nanoscience
  • MERGE: ModElling the Regional and Global Earth system

Publishing year







Atmospheric Chemistry and Physics





Document type

Journal article


Copernicus GmbH


  • Subatomic Physics




  • ISSN: 1680-7324