
Jan-Eric Ståhl
Professor

Methodology for evaluating effects of material characteristics on machinability-theory and statistics-based modelling applied on Alloy 718
Author
Summary, in English
The potential machinability for Alloy 718 (Inconel 718) is examined in terms of five material characteristics considered to play a key role in the machinability: ductility (elongation to fracture), strain hardening (ultimate tensile strength over yield strength), thermal conductivity, yield strength and abrasiveness (amount of carbides). The material characteristics are simulated with the software JMatPro from Sente software. The effects of composition, grain size, hardness (size of the precipitated intermetallic particles for given volume fraction), heat treatment, temperature and strain rate have been modelled and statistically evaluated. Combining thermodynamics-based modelling (JMatPro), design of experiments and statistical analysis (Minitab), and machinability polar diagram, a concept on methodology to assess variations in material specifications and to optimise these specifications with respect to potential machinability has been developed. The mechanical properties, predicted from the meta-modelling are found to be affected by the same parameters: hardness (intermetallic particles characteristics), grain size, amount of aluminium, strain rate and temperature. The abrasiveness should only be affected by the amount of carbon. Simulated material characteristics for two different types of turbine discs were compared with measured tool wear from production environment machining experiments. Variations in material characteristics between the discs were small as well as the critical tool wear, revealing a robust metal cutting process.
Department/s
- Production and Materials Engineering
- SPI: Sustainable Production Initiative
Publishing year
2012
Language
English
Pages
55-66
Publication/Series
International Journal of Advanced Manufacturing Technology
Volume
59
Issue
1-4
Document type
Journal article
Publisher
Springer
Topic
- Materials Engineering
Keywords
- Metal cutting
- Alloy 718
- Material properties
- Machinability
- JMatPro
- Meta-modelling
Status
Published
ISBN/ISSN/Other
- ISSN: 0268-3768