The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Jan-Eric Ståhl

Jan-Eric Ståhl

Professor

Jan-Eric Ståhl

Experimental studies of cutting force variation in face milling

Author

  • Carin Andersson
  • Mats Andersson
  • Jan-Eric Ståhl

Summary, in English

The purpose of this paper is to present a developed cutting force model for multi-toothed cutting processes, including a complete set of parameters influencing the cutting force variation that has been shown to occur in face milling, and to analyse to what extent these parameters influence the total cutting force variation for a selected tool geometry. The scope is to model and analyse the cutting forces for each individual tooth on the tool, to be able to draw conclusions about how the cutting action for an individual tooth is affected by its neighbours.



A previously developed cutting force model for multi-toothed cutting processes is supplemented with three new parameters; eccentricity of the spindle, continuous cutting edge deterioration and load inflicted tool deflection influencing the cutting force variation. A previously developed milling force sensor is used to experimentally analyse the cutting force variation, and to give input to the cutting force simulation performed with the developed cutting force model.



The experimental results from the case studied in this paper show that there are mainly three factors influencing the cutting force variation for a tool with new inserts. Radial and axial cutting edge position causes approximately 50% of the force variation for the case studied in this paper. Approximately 40% arises from eccentricity and the remaining 10% is the result of spindle deflection during machining. The experimental results presented in this paper show a new type of cutting force diagrams where the force variation for each individual tooth when two cutting edges are engaged in the workpiece at the same time. The wear studies performed shows a redistribution of the individual main cutting forces dependent on the wear propagation for each tooth.

Department/s

  • Production and Materials Engineering
  • SPI: Sustainable Production Initiative

Publishing year

2011

Language

English

Pages

67-76

Publication/Series

International Journal of Machine Tools & Manufacture

Volume

51

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Materials Engineering

Keywords

  • Model
  • Force sensor
  • Face milling
  • Cutting force
  • Variation
  • Measurement

Status

Published

ISBN/ISSN/Other

  • ISSN: 0890-6955