The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Joakim Pagels

Joakim Pagels

Senior Lecturer

Portrait of Joakim Pagels

Fly ash penetration through electrostatic precipitator and flue gas condenser in a 6 MW biomass fired boiler


  • Michael Strand
  • Joakim Pagels
  • Aneta Wierzbicka
  • Anders Gudmundsson
  • Erik Swietlicki
  • Mats Bohgard
  • Mehri Sanati

Summary, in English

The effects of an electrostatic precipitator and a flue gas condenser on size resolved fly ash particle concentration and composition were studied in a 6 MW biomass combustion unit, fired with moist forest residue. The boiler was of moving grate type. The fly ash particles were sampled upstream and downstream of the electrostatic precipitator and flue gas condenser, respectively. Fine particle number size distributions were measured using an electric mobility spectrometer (SMPS) and coarse particle number size distributions were measured using a time-of-flight instrument (APS). The mass size distributions were measured using a multi-jet low pressure cascade impactor (DLPI). For chemical analyses of the impactor substrates particle induced X-ray emission analysis (PIXE) was used. After the flue gas passed the electrostatic precipitator (ESP), the fly ash particle concentration was reduced by approximately 96% by number and 83% by mass. After the particles passed the flue gas condenser, particle number concentration was only marginally altered, whereas the mass concentration was reduced by half. Both the ESP and the condenser showed, size dependent particle separation efficiency. The main elements (Z > 12) in the fine fly ash fraction were K, S, and Cl, whereas the main elements in the coarse fraction were Ca, K, S, and Cl. After passing the ESP the mass ratio of Ca decreased in the coarse fraction, while the ratios of K, S, and Cl increased, indicating transference of fly ash material from the fine to the coarse particle fraction. There was no significant difference in the elemental composition for any particle size fraction sampled upstream or downstream of the condenser.


  • Ergonomics and Aerosol Technology
  • Nuclear physics

Publishing year







Energy & Fuels





Document type

Journal article


The American Chemical Society (ACS)


  • Subatomic Physics
  • Production Engineering, Human Work Science and Ergonomics




  • ISSN: 0887-0624