The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Joakim Pagels

Joakim Pagels

Senior Lecturer

Portrait of Joakim Pagels

Experimentally Determined Human Respiratory Tract Deposition of Airborne Particles at a Busy Street


  • Jakob Löndahl
  • Andreas Massling
  • Erik Swietlicki
  • Elvira Vaclavik Brauner
  • Matthias Ketzel
  • Joakim Pagels
  • Steffen Loft

Summary, in English

Traffic is one of the major sources of harmful airborne particles worldwide. To relate exposure to adverse health effects it is important to determine the deposition probability of the inhaled particles in the human respiratory tract. The size-dependent deposition of 12-580 nm particles was measured with a novel setup in 9 healthy subjects breathing by mouth on the windward side of a busy street in Copenhagen, Denmark. The aerosol was characterized both at the curbside and, to obtain the background concentration, at rooftop level. Particle hygroscopicity, a key parameter affecting respiratory tract deposition, was also measured at the same time of exposure. The total deposition fraction of the curbside particles in the range 12-580 nm was 0.60 by number, 0.29 by surface area, and 0.23 by mass. The deposition fractions of the "traffic exhaust" contribution, calculated as the hydrophobic fraction of the curbside particles, was 0.68, 0.35, and 0.28 by number, surface area, and mass, respectively. The deposited amount of traffic exhaust particles was 16 times higher by number and 3 times higher by surface area compared to the deposition of residential biofuel combustion particles investigated previously (equal inhaled mass concentrations). This was because the traffic exhaust particles had both a higher deposition probability and a higher number and surface area concentration per unit mass. To validate the results, the respiratory tract deposition was estimated by using the well-established ICRP. model. Predictions were in agreement with experimental results when the effects of particle hygroscopicity were considered in the model.


  • Nuclear physics
  • Ergonomics and Aerosol Technology

Publishing year







Environmental Science & Technology





Document type

Journal article


The American Chemical Society (ACS)


  • Production Engineering, Human Work Science and Ergonomics
  • Subatomic Physics




  • ISSN: 1520-5851