The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Joakim Pagels

Joakim Pagels

Senior Lecturer

Portrait of Joakim Pagels

Comprehensive proteome analysis of nasal lavage samples after controlled exposure to welding nanoparticles shows an induced acute phase and a nuclear receptor, LXR/RXR, activation that influence the status of the extracellular matrix

Author

  • Neserin Ali
  • Stefan Ljunggren
  • Helen M. Karlsson
  • Aneta Wierzbicka
  • Joakim Pagels
  • Christina Isaxon
  • Anders Gudmundsson
  • Jenny Rissler
  • Jörn Nielsen
  • Christian H. Lindh
  • Monica Kåredal

Summary, in English

Background: Epidemiological studies have shown that many welders experience respiratory symptoms. During the welding process a large number of airborne nanosized particles are generated, which might be inhaled and deposited in the respiratory tract. Knowledge of the underlying mechanisms behind observed symptoms is still partly lacking, although inflammation is suggested to play a central role. The aim of this study was to investigate the effects of welding fume particle exposure on the proteome expression level in welders suffering from respiratory symptoms, and changes in protein mediators in nasal lavage samples were analyzed. Such mediators will be helpful to clarify the pathomechanisms behind welding fume particle-induced effects. Methods: In an exposure chamber, 11 welders with work-related symptoms in the lower airways during the last month were exposed to mild-steel welding fume particles (1 mg/m3) and to filtered air, respectively, in a double-blind manner. Nasal lavage samples were collected before, immediately after, and the day after exposure. The proteins in the nasal lavage were analyzed with two different mass spectrometry approaches, label-free discovery shotgun LC-MS/MS and a targeted selected reaction monitoring LC-MS/MS analyzing 130 proteins and four in vivo peptide degradation products. Results: The analysis revealed 30 significantly changed proteins that were associated with two main pathways; activation of acute phase response signaling and activation of LXR/RXR, which is a nuclear receptor family involved in lipid signaling. Connective tissue proteins and proteins controlling the degradation of such tissues, including two different matrix metalloprotease proteins, MMP8 and MMP9, were among the significantly changed enzymes and were identified as important key players in the pathways. Conclusion: Exposure to mild-steel welding fume particles causes measurable changes on the proteome level in nasal lavage matrix in exposed welders, although no clinical symptoms were manifested. The results suggested that the exposure causes an immediate effect on the proteome level involving acute phase proteins and mediators regulating lipid signaling. Proteases involved in maintaining the balance between the formation and degradation of extracellular matrix proteins are important key proteins in the induced effects.

Department/s

  • NanoLund: Center for Nanoscience
  • Division of Occupational and Environmental Medicine, Lund University
  • Ergonomics and Aerosol Technology

Publishing year

2018-05-11

Language

English

Publication/Series

Clinical Proteomics

Volume

15

Issue

1

Document type

Journal article

Publisher

Humana Press

Topic

  • Respiratory Medicine and Allergy

Keywords

  • Chamber study
  • Effects
  • Mass spectrometry
  • Nasal lavage
  • Pathways
  • Proteomics
  • Welding fume particles

Status

Published

ISBN/ISSN/Other

  • ISSN: 1542-6416