Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Jonas Tegenfeldt

Professor, Coordinator Nanobiology & Neuronanoscience

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Tipping the balance of deterministic lateral displacement devices using dielectrophoresis.

Author

  • Jason Beech
  • Peter Jönsson
  • Jonas Tegenfeldt

Summary, in English

We report the use of dielectrophoresis (DEP) to achieve tunability, improve dynamic range and open up for the separation of particles with regard to parameters other than hydrodynamic size in deterministic lateral displacement (DLD) devices. DLD devices have been shown capable of rapidly and continuously separating micrometer sized plastic spheres by size with a resolution of 20 nm in diameter and of being able to handle the separation of biological samples as wide ranging as bacterial artificial chromosomes and blood cells. DEP, while not exhibiting the same resolution in size separation as DLD, has the benefit of being easy to tune and can, by choosing the frequency, be used to probe a variety of particle properties. By combining DLD and DEP we open up for the advantages, while avoiding the drawbacks, of the two techniques. We present a proof of principle in which the critical size for separation of polystyrene beads is tuned in the range 2-6 microm in a single device by the application of moderate (100 V cm(-1)), low frequency (100 Hz) AC electric fields. The behaviour of the device was further investigated by performing simulations of particle trajectories, the results of which were in good qualitative agreement with experiments, indicating the potential of the method for tunable, high-resolution separations with respect to both size and polarisability.

Department/s

  • Solid State Physics

Publishing year

2009

Language

English

Pages

2698-2706

Publication/Series

Lab on a Chip

Volume

9

Issue

18

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1473-0189