Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Jonas Tegenfeldt

Professor, Coordinator Nanobiology & Neuronanoscience

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Open channel deterministic lateral displacement for particle and cell sorting

Author

  • Si Hoai Trung Tran
  • Bao D. Ho
  • Jason P. Beech
  • Jonas O. Tegenfeldt

Summary, in English

We present the use of capillary driven flow over patterned surfaces to achieve cheap and simple, but powerful separation of biologically relevant particle systems. The wide use of microfluidics is often hampered by the propensity for devices to clog due to the small channel sizes and the inability to access the interior of devices for cleaning. Often the devices can only be used for a limited duration and most frequently only once. In addition the cost and power requirements of flow control equipment limits the wider spread of the devices. We address these issues by presenting a simple particle- and cell-sorting scheme based on controlled fluid flow on a patterned surface. The open architecture makes it highly robust and easy to use. If clogging occurs it is straightforward to rinse the device and reuse it. Instead of external mechanical pumps, paper is used as a capillary pump. The different fractions are deposited in the paper and can subsequently be handled independently by simply cutting the paper for downstream processing and analyses. The sorting, based on deterministic lateral displacement, performs equivalently well in comparison with standard covered devices. We demonstrate successful separation of cancer cells and parasites from blood with good viability and with relevance for diagnostics and sample preparation. Sorting a mixture of soil and blood, we show the potential for forensic applications.

Department/s

  • Solid State Physics
  • NanoLund
  • BioCARE: Biomarkers in Cancer Medicine improving Health Care, Education and Innovation

Publishing year

2017

Language

English

Pages

3592-3600

Publication/Series

Lab on a Chip - Miniaturisation for Chemistry and Biology

Volume

17

Issue

21

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Medical Laboratory and Measurements Technologies

Status

Published

ISBN/ISSN/Other

  • ISSN: 1473-0197