Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Jonas Tegenfeldt

Professor, Coordinator Nanobiology & Neuronanoscience

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Charge-based separation of micro-and nanoparticles

Author

  • Bao D. Ho
  • Jason P. Beech
  • Jonas O. Tegenfeldt

Summary, in English

Deterministic Lateral Displacement (DLD) is a label-free particle sorting method that separates by size continuously and with high resolution. By combining DLD with electric fields (eDLD), we show separation of a variety of nano and micro-sized particles primarily by their zeta potential. Zeta potential is an indicator of electrokinetic charge—the charge corresponding to the electric field at the shear plane—an important property of micro-and nanoparticles in colloidal or separation science. We also demonstrate proof of principle of separation of nanoscale liposomes of different lipid compositions, with strong relevance for biomedicine. We perform careful characterization of relevant experimental conditions necessary to obtain adequate sorting of different particle types. By choosing a combination of frequency and amplitude, sorting can be made sensitive to the particle subgroup of interest. The enhanced displacement effect due to electrokinetics is found to be significant at low frequency and for particles with high zeta potential. The effect appears to scale with the square of the voltage, suggesting that it is associated with either non-linear electrokinetics or dielectrophoresis (DEP). However, since we observe large changes in separation behavior over the frequency range at which DEP forces are expected to remain constant, DEP can be ruled out.

Department/s

  • Solid State Physics
  • NanoLund
  • LUCC - Lund University Cancer Centre

Publishing year

2020

Language

English

Publication/Series

Micromachines

Volume

11

Issue

11

Document type

Journal article

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Topic

  • Condensed Matter Physics
  • Biophysics

Keywords

  • Charge-based separation
  • Electrokinetic deterministic lateral displacement

Status

Published

ISBN/ISSN/Other

  • ISSN: 2072-666X