Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Jonas Tegenfeldt

Professor, Coordinator Nanobiology & Neuronanoscience

Portrait of Jonas Tegenfeldt. Photo: Kennet Ruona

Mechanical Behavior of a Supported Lipid Bilayer under External Shear Forces.


  • Peter Jönsson
  • Jason Beech
  • Jonas Tegenfeldt
  • Fredrik Höök

Summary, in English

Shear forces from a pressure-driven bulk flow in a microfluidic channel can be used to induce and control the motion of a supported lipid bilayer (SLB) formed on the walls of the channel. We here present a theoretical model that relates the experimentally observed drift velocities of an egg yolk phosphatidylcholine (egg PC) SLB to the hydrodynamic drag force from the bulk flow, the intermonolayer friction coefficient, b, of the bilayer, and the friction coefficient, b(ls), between the lower leaflet of the bilayer and the supporting substrate. The drift velocity and diffusivity of the lipids in the SLB were obtained by photobleaching a delimited area of fluorescently labeled lipids and subsequently monitoring the recovery and convective motion of the bleached spot. A striking observation was that the drift velocity of the lipids was observed to be nearly 6 orders of magnitude smaller than the bulk velocity at the center of the channel. This predicts a value for b(ls) that is at least 25 times as high as predicted by the traditional model with the SLB and the support spaced by a homogeneous 1 nm thick film of water. In addition, the intermonolayer friction coefficient was estimated to 2 x 10(7) Pa s/m, a value that increased after addition of glycerol to the bulk solution. This increase was accompanied by an equal decrease in the lipid diffusivity, with both observations indicating an increased viscous drag within the bilayer when glycerol was added to the bulk solution.


  • Solid State Physics

Publishing year












Document type

Journal article


The American Chemical Society (ACS)


  • Condensed Matter Physics




  • ISSN: 0743-7463