Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Knut Deppert

Knut Deppert


Knut Deppert

Magnetic field-assisted chain formation of aerosol nanoparticles


  • Calle Preger
  • Martin Josefsson
  • Knut Deppert
  • Maria Messing

Summary, in English

We will present the formation of nanoparticle chains by deposit magnetic iron oxide aerosol nanoparticles in a combined electric and magnetic field. Aerosol methods, in particular spark ablation, provides a good means to produce magnetic nanoparticles with a controllable size and concentration in a broad size range without agglomeration. These aerosol nanoparticles are usually deposited using an electrostatic precipitator (ESP) where a large voltage attracts the charged particles towards the substrate where they are collected. As the concentration of the particles on the substrate increases, large clusters are formed due to the interaction between the particles on the substrate and the particles in the gas.
In this study, we have added a magnetic field to the conventional ESP to modify the cluster formation. As the particles approaches the surface, the magnetic interaction between the deposited particles and the particles in the gas becomes more dominant. The particles will have a higher tendency of colliding and forming free-standing chains. With increased concentration these chains will collapse into bundles. The added magnetic field enables the formation of nanoparticle structures not achievable with an ESP alone. The nanoparticles are deposited with low concentration, making it possible to study the growth of the chains by off-line analysis using electron microscopy and correlate these results to simulations. We will demonstrate how the chains and bundles are influenced by the strength of the magnetic field and the electric field as well as the size and concentration of the particles.


  • Solid State Physics
  • NanoLund
  • Synchrotron Radiation Research

Publishing year




Document type

Conference paper: abstract


  • Nano Technology

Conference name

21th International Vacuum Congress

Conference date

2019-07-01 - 2019-07-05

Conference place

Malmö, Sweden