Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Knut Deppert

Knut Deppert

Professor

Knut Deppert

Deposition of aerosol nanoparticles on flat substrate surfaces

Author

  • TJ Krinke
  • H Fissan
  • Knut Deppert

Summary, in English

The deposition process in a homogeneous electric field, and the subsequent microscopic arrangement of charged, metallic aerosol nanoparticles in the size range of 30 nm on flat substrate surfaces is described. The first aspect of the investigation is the transfer of the particles from a three-dimensional distribution in the gas phase into their arrangement on the substrate surface, in dependence on particle-particle interactions and on Brownian motion. The theoretical results obtained with a trajectory model are compared with experimental results obtained by scanning electron microscope investigation of the deposition patterns. The second aspect of the investigation is the nanostructured arrangement of nanoparticles by means of inhomogeneous electric microfields. We demonstrate a parallel process for the transfer of charge patterns on oxidized silicon surfaces followed by the deposition of monodisperse singly charged nanoparticles, which allows the creation of particle arrangements reaching from 100 nm resolution up to structures in the upper micrometer range. The charge patterns are transferred using a polydimethylsiloxane (PDMS)-stamp, which is covered with a metal layer.

Department/s

  • Solid State Physics

Publishing year

2003

Language

English

Pages

333-345

Publication/Series

Phase Transitions

Volume

76

Issue

4-5

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Condensed Matter Physics

Keywords

  • trajectory model
  • nanoparticle
  • structured deposition

Status

Published

ISBN/ISSN/Other

  • ISSN: 1029-0338