The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Maria Hedmer

Maria Hedmer

Docent, PhD

Portrait of Maria Hedmer

Underground emissions and miners' personal exposure to diesel and renewable diesel exhaust in a Swedish iron ore mine

Author

  • Louise Gren
  • Annette M Krais
  • Eva Assarsson
  • Karin Broberg
  • Malin Engfeldt
  • Christian Lindh
  • Bo Strandberg
  • Joakim Pagels
  • Maria Hedmer

Summary, in English

PURPOSE: Underground diesel exhaust exposure is an occupational health risk. It is not known how recent intensified emission legislation and use of renewable fuels have reduced or altered occupational exposures. We characterized these effects on multipollutant personal exposure to diesel exhaust and underground ambient air concentrations in an underground iron ore mine.

METHODS: Full-shift personal sampling (12 workers) of elemental carbon (EC), nitrogen dioxide (NO2), polycyclic aromatic hydrocarbons (PAHs), and equivalent black carbon (eBC) was performed. The study used and validated eBC as an online proxy for occupational exposure to EC. Ambient air sampling of these pollutants and particle number size distribution and concentration were performed in the vicinity of the workers. Urine samples (27 workers) were collected after 8 h exposure and analyzed for PAH metabolites and effect biomarkers (8-oxodG for DNA oxidative damage, 4-HNE-MA for lipid peroxidation, 3-HPMA for acrolein).

RESULTS: The personal exposures (geometric mean; GM) of the participating miners were 7 µg EC m-3 and 153 µg NO2 m-3, which are below the EU occupational exposure limits. However, exposures up to 94 µg EC m-3 and 1200 µg NO2 m-3 were observed. There was a tendency that the operators of vehicles complying with sharpened emission legislation had lower exposure of EC. eBC and NO2 correlated with EC, R = 0.94 and R = 0.66, respectively. No correlation was found between EC and the sum of 16 priority PAHs (GM 1790 ng m-3). Ratios between personal exposures and ambient concentrations were similar and close to 1 for EC and NO2, but significantly higher for PAHs. Semi-volatile PAHs may not be effectively reduced by the aftertreatment systems, and ambient area sampling did not predict the personal airborne PAHs exposure well, neither did the slightly elevated concentration of urinary PAH metabolites correlate with airborne PAH exposure.

CONCLUSION: Miners' exposures to EC and NO2 were lower than those in older studies indicating the effect of sharpened emission legislation and new technologies. Using modern vehicles with diesel particulate filter (DPF) may have contributed to the lower ambient underground PM concentration and exposures. The semi-volatile behavior of the PAHs might have led to inefficient removal in the engines aftertreatment systems and delayed removal by the workplace ventilation system due to partitioning to indoor surfaces. The results indicate that secondary emissions can be an important source of gaseous PAH exposure in the mine.

Department/s

  • Ergonomics and Aerosol Technology
  • Division of Occupational and Environmental Medicine, Lund University

Publishing year

2022-03-16

Language

English

Publication/Series

International Archives of Occupational and Environmental Health

Document type

Journal article

Publisher

Springer

Topic

  • Environmental Health and Occupational Health

Keywords

  • Underground mine
  • Occupational diesel exposure
  • PAHs
  • Biomarkers
  • Emission factors
  • Aftertreatment systems
  • Aerosols

Status

Published

ISBN/ISSN/Other

  • ISSN: 1432-1246