Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Martin Leijnse; Photo: Kennet Ruona

Martin Leijnse

Professor, Member of NanoLund Management Group

Portrait of Martin Leijnse; Photo: Kennet Ruona

Multilevel effects in quantum dot based parity-to-charge conversion of Majorana box qubits

Author

  • Jens Schulenborg
  • Michele Burrello
  • Martin Leijnse
  • Karsten Flensberg

Summary, in English

Quantum dot based parity-to-charge conversion is a promising method for reading out quantum information encoded nonlocally into pairs of Majorana zero modes. To obtain a sizable parity-to-charge visibility, it is crucial to tune the relative phase of the tunnel couplings between the dot and the Majorana modes appropriately. However, in the presence of multiple quasidegenerate dot orbitals, it is in general not experimentally feasible to tune all couplings individually. This paper shows that such configurations could make it difficult to avoid a destructive multiorbital interference effect that substantially reduces the readout visibility. We analyze this effect using a Lindblad quantum master equation. This exposes how the experimentally relevant system parameters enhance or suppress the visibility when strong charging energy, measurement dissipation, and, most importantly, multiorbital interference is accounted for. In particular, we find that an intermediate-time readout could mitigate some of the interference-related visibility reductions affecting the stationary limit.

Department/s

  • Solid State Physics
  • NanoLund: Center for Nanoscience

Publishing year

2021

Language

English

Publication/Series

Physical Review B

Volume

103

Issue

24

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9950