Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Martin Leijnse; Photo: Kennet Ruona

Martin Leijnse

Professor, Member of NanoLund Management Group

Portrait of Martin Leijnse; Photo: Kennet Ruona

Extracting band structure characteristics of GaSb/InAs core-shell nanowires from thermoelectric properties

Author

  • Florinda Viñas
  • H. Q. Xu
  • Martin Leijnse

Summary, in English

Nanowires with a GaSb core and an InAs shell (and the inverted structure) are interesting for studies of electron-hole hybridization and interaction effects due to the bulk broken band-gap alignment at the material interface. We have used eight-band k·p theory together with the envelope function approximation to calculate the band structure of such nanowires. For a fixed core radius, as a function of shell thickness the band structure changes from metallic (for a thick shell) to semiconducting (for a thin shell) with a gap induced by quantum confinement. For intermediate shell thickness, a different gapped band structure can appear, where the gap is induced by hybridization between the valence band in GaSb and the conduction band in InAs. To establish a relationship between the nanowire band structures and signatures in thermoelectrical measurements, we use the calculated energy dispersions as input to the Boltzmann equation and to ballistic transport equations to study the diffusive limit and the ballistic limit, respectively. Our theoretical results provide a guide for experiments, showing how thermoelectric measurements in a gated setup can be used to distinguish between different types of band gaps, or tune the system into a regime with few electrons and few holes, which can be of interest for studies of exciton physics.

Department/s

  • Solid State Physics
  • NanoLund: Center for Nanoscience

Publishing year

2017-03-16

Language

English

Publication/Series

Physical Review B

Volume

95

Issue

11

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1098-0121