Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

picture of me

Patrick Potts

Postdoctoral fellow

picture of me

Power, efficiency and fluctuations in a quantum point contact as steady-state thermoelectric heat engine

Author

  • Sara Kheradsoud
  • Nastaran Dashti
  • Maciej Misiorny
  • Patrick P. Potts
  • Janine Splettstoesser
  • Peter Samuelsson

Summary, in English

The trade-off between large power output, high efficiency and small fluctuations in the operation of heat engines has recently received interest in the context of thermodynamic uncertainty relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating the operation of a quantum point contact (QPC) with an energy-dependent transmission function as a steady-state thermoelectric heat engine. As a starting point, we review and extend previous analysis of the power production and efficiency. Thereafter the power fluctuations and the bound jointly imposed on the power, efficiency, and fluctuations by the TURs are analyzed as additional performance quantifiers. We allow for arbitrary smoothness of the transmission probability of the QPC, which exhibits a close to step-like dependence in energy, and consider both the linear and the non-linear regime of operation. It is found that for a broad range of parameters, the power production reaches nearly its theoretical maximum value, with efficiencies more than half of the Carnot efficiency and at the same time with rather small fluctuations. Moreover, we show that by demanding a non-zero power production, in the linear regime a stronger TUR can be formulated in terms of the thermoelectric figure of merit. Interestingly, this bound holds also in a wide parameter regime beyond linear response for our QPC device.

Department/s

  • Mathematical Physics
  • NanoLund

Publishing year

2019-08-08

Language

English

Publication/Series

Entropy

Volume

21

Issue

8

Document type

Journal article

Publisher

Multidisciplinary Digital Publishing Institute (MDPI)

Topic

  • Condensed Matter Physics

Keywords

  • Fluctuations
  • Heat engines
  • Mesoscopic physics
  • Quantum transport
  • Thermodynamic uncertainty relations
  • Thermoelectricity

Status

Published

ISBN/ISSN/Other

  • ISSN: 1099-4300