Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Reine Wallenberg

Professor, Coordinator Materials Science

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3-delta /Sr0.95Ti0.9Nb0.1O3-delta (BCZY27/STN95)

Author

  • Jason S. Fish
  • Sandrine Ricote
  • Filip Lenrick
  • Reine Wallenberg
  • Tim C. Holgate
  • Ryan O'Hayre
  • Nikolaos Bonanos

Summary, in English

A novel two-phase ceramic composite (cercer) material consisting of a solid solution of barium cerate and -zirconate doped with yttrium (BaCe0.2Zr0.7Y0.1O3-delta : BCZY27), together with niobium-doped strontium titanate (Sr0.95Ti0.9Nb0.1O3-delta : STN95), has been synthesized by solid-state reaction and sintered conventionally (CS) at 1350-1500 A degrees C, as well as by spark plasma sintering (SPS) at 1300-1350 A degrees C. CS samples were porous and exhibited high degrees of inter-phase reaction. Nickel oxide sintering aids did not improve CS sample density. In contrast, samples made by SPS were significantly denser (> 95 %) and showed less reaction between phases. A pseudo-optimum SPS profile was developed, accounting for the effects of thermal expansion mismatch between BCZY27 and STN95. X-ray diffraction indicated secondary phases exist, but there was no indication of their presence at grain boundaries based on thorough study of these regions with high-resolution transmission electron microscopy and selective area electron diffraction. We thus suggest that these phases are present as independent grains in the bulk. It is believed these secondary phases inhibit electronic conductivity in the composite.

Department/s

  • Centre for Analysis and Synthesis
  • NanoLund

Publishing year

2013

Language

English

Pages

6177-6185

Publication/Series

Journal of Materials Science

Volume

48

Issue

18

Document type

Journal article

Publisher

Springer

Topic

  • Chemical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0022-2461