Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Reine Wallenberg

Professor, Coordinator Materials Science

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Phase Transformation in Radially Merged Wurtzite GaAs Nanowires.


  • Daniel Jacobsson
  • Fangfang Yang
  • Karla Hillerich
  • Filip Lenrick
  • Sebastian Lehmann
  • Dominik Kriegner
  • Julian Stangl
  • Reine Wallenberg
  • Kimberly Dick Thelander
  • Jonas Johansson

Summary, in English

III-V Nanowires (NWs) grown with metal-organic chemical vapor deposition commonly show a polytypic crystal structure, allowing growth of structures not found in the bulk counterpart. In this paper we studied the radial overgrowth of pure wurtzite (WZ) GaAs nanowires and characterized the samples with high resolution X-ray diffraction (XRD) to reveal the crystal structure of the grown material. In particular, we investigated what happens when adjacent WZ NWs radially merge with each other by analyzing the evolution of XRD peaks for different amounts of radial overgrowth and merging. By preparing cross-sectional lamella samples we also analyzed the local crystal structure of partly merged NWs by transmission electron microscopy. Once individual NWs start to merge, the crystal structure of the merged segments is transformed progressively from initial pure WZ to a mixed WZ/ZB structure. The merging process is then modeled using a simple combinatorial approach, which predicts that merging of two or more WZ NWs will result in a mixed crystal structure containing WZ, ZB, and 4H. The existence large and relaxed segments of 4H structure within the merged NWs was confirmed by XRD, allowing us to accurately determine the lattice parameters of GaAs 4H. We compare the measured WZ and 4H unit cells with an ideal tetrahedron and find that both the polytypes are elongated in the c-axis and compressed in the a-axis compared to the geometrically converted cubic ZB unit cell.


  • Solid State Physics
  • Centre for Analysis and Synthesis
  • NanoLund

Publishing year







Crystal Growth & Design





Document type

Journal article


The American Chemical Society (ACS)


  • Materials Chemistry




  • ISSN: 1528-7483