Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Reine Wallenberg

Professor, Coordinator Materials Science

Portrait of Reine Wallenberg. Photo: Kennet Ruona

High In-content InGaN nano-pyramids : Tuning crystal homogeneity by optimized nucleation of GaN seeds


  • Zhaoxia Bi
  • Anders Gustafsson
  • Filip Lenrick
  • David Lindgren
  • Olof Hultin
  • L. Reine Wallenberg
  • B. Jonas Ohlsson
  • Bo Monemar
  • Lars Samuelson

Summary, in English

Uniform arrays of submicron hexagonal InGaN pyramids with high morphological and material homogeneity, reaching an indium composition of 20%, are presented in this work. The pyramids were grown by selective area metal-organic vapor phase epitaxy and nucleated from small openings in a SiN mask. The growth selectivity was accurately controlled with diffusion lengths of the gallium and indium species, more than 1 μm on the SiN surface. High material homogeneity of the pyramids was achieved by inserting a precisely formed GaN pyramidal seed prior to InGaN growth, leading to the growth of well-shaped InGaN pyramids delimited by six equivalent 10 1 ̄ 1 facets. Further analysis reveals a variation in the indium composition to be mediated by competing InGaN growth on two types of crystal planes, 10 1 ̄ 1 and (0001). Typically, the InGaN growth on 10 1 ̄ 1 planes is much slower than on the (0001) plane. The formation of the (0001) plane and the growth of InGaN on it were found to be dependent on the morphology of the GaN seeds. We propose growth of InGaN pyramids seeded by 10 1 ̄ 1-faceted GaN pyramids as a mean to avoid InGaN material grown on the otherwise formed (0001) plane, leading to a significant reduction of variations in the indium composition in the InGaN pyramids. The InGaN pyramids in this work can be used as a high-quality template for optoelectronic devices having indium-rich active layers, with a potential of reaching green, yellow, and red emissions for LEDs.


  • Solid State Physics
  • NanoLund
  • Centre for Analysis and Synthesis

Publishing year





Journal of Applied Physics





Document type

Journal article


American Institute of Physics (AIP)


  • Condensed Matter Physics




  • ISSN: 0021-8979