Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Reine Wallenberg

Professor, Coordinator Materials Science

Portrait of Reine Wallenberg. Photo: Kennet Ruona

Formation of carbonated apatite particles from a supersaturated inorganic blood serum model


  • Karin Sandin
  • Lars Kloo
  • Pernilla Nevsten
  • Reine Wallenberg
  • Lars-Fride Olsson

Summary, in English

Pathological calcification is common among for instance dialysis patients, and this causes an increase in mortality risk. An elevated serum phosphate concentration among those patients strongly correlates to this increase. In this work investigations of the conditions, composition, crystallinity and morphology of in vitro calcification are performed and related to results from in vivo studies. The study was performed under conditions mimicking physiological ones, i.e. a pH around 7.40, a temperature of 37A degrees C, an ionic strength of 150 mM and ion concentrations close to those in human serum including the effects of elevated phosphate concentrations. The course of precipitation involves an initial precipitate that subsequently re-dissolves to give another precipitate, in accordance with the well-known Ostwald ripening theory. The final bulk precipitate consists of a macroscopically amorphous carbonated apatite. The amorphous apatite is formed from assemblies of spherical particles in the mu m range, in turn composed of nano-crystalline needles of about 10 x 100 nm. Even the initially formed precipitate, as well as a small amount of precipitate that occurs on the liquid surface, consist of a carbonated calcium phosphate. The in vitro observed carbonated apatite bears strong resemblance to in vivo cardiovascular calcification known from literature.


  • Centre for Analysis and Synthesis

Publishing year







Journal of Materials Science: Materials in Medicine





Document type

Journal article




  • Medical Materials




  • ISSN: 1573-4838