The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Sara Snogerup Linse

Sara Linse

Professor

Portrait of Sara Snogerup Linse

Electrostatic contributions to the kinetics and thermodynamics of protein assembly

Author

  • D Dell'Orco
  • Wei-Feng Xue
  • Eva Thulin
  • Sara Linse

Summary, in English

The role of electrostatic interactions in the assembly of a native protein structure was studied using fragment complementation. Contributions of salt, pH, or surface charges to the kinetics and equilibrium of calbindin D-9k reconstitution was measured in the presence of Ca2+ using surface plasmon resonance and isothermal titration calorimetry. Whereas surface charge substitutions primarily affect the dissociation rate constant, the association rates are correlated with subdomain net charge in a way expected for Coulomb interactions. The affinity is reduced in all mutants, with the largest effect (260-fold) observed for the double mutant K25E+K29E. At low net charge, detailed charge distribution is important, and charges remote from the partner EF-hand have less influence than close ones. The effects of salt and pH on the reconstitution are smaller than mutational effects. The interaction between the wild-type EF-hands occurs with high affinity (K-A = 1.3 x 10(10) M-1; K-D = 80 pM). The enthalpy of association is overall favorable and there appears to be a very large favorable entropic contribution from the desolvation of hydrophobic surfaces that become buried in the complex. Electrostatic interactions contribute significantly to the affinity between the subdomains, but other factors, such as hydrophobic interactions, dominate.

Department/s

  • Biophysical Chemistry

Publishing year

2005

Language

English

Pages

1991-2002

Publication/Series

Biophysical Journal

Volume

88

Issue

3

Document type

Journal article

Publisher

Cell Press

Topic

  • Biophysics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1542-0086