The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Sara Snogerup Linse

Sara Linse

Professor

Portrait of Sara Snogerup Linse

Effects of Polyamino Acids and Polyelectrolytes on Amyloid β Fibril Formation.

Author

  • Anna Assarsson
  • Sara Linse
  • Celia Cabaleiro-Lago

Summary, in English

The fibril formation of the neurodegenerative peptide amyloid β (Aβ42) is sensitive to solution conditions, and several proteins and peptides have been found to retard the process. Aβ42 fibril formation was followed with ThT fluorescence in the presence of polyamino acids (poly-glutamic acid, poly-lysine, and poly-threonine) and other polymers (poly(acrylic acid), poly(ethylenimine), and poly(diallyldimethylammonium chloride). An accelerating effect on the Aβ42 aggregation process is observed from all positively charged polymers, while no effect is seen from the negative or neutral polymers. The accelerating effect is dependent on the concentration of positive polymer in a highly reproducible manner. Acceleration is observed from a 1:500 polymer to Aβ42 weight ratio and up. Polyamino acids and the other polymers exert quantitatively the same effect at the same concentrations based on weight. Fibrils are formed in all cases as verified by transmission electron microscopy. The concentrations of polymers required for acceleration are too low to affect the Aβ42 aggregation process through increased ionic strength or molecular crowding effects. Instead, the acceleration seems to arise from the locally increased Aβ42 concentration near the polymers, which favors association and affects the electrostatic environment of the peptide.

Department/s

  • Biochemistry and Structural Biology
  • MultiPark: Multidisciplinary research focused on Parkinson´s disease
  • NanoLund: Center for Nanoscience

Publishing year

2014

Language

English

Pages

8812-8818

Publication/Series

Langmuir

Volume

30

Issue

29

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463