The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Sara Snogerup Linse

Sara Linse


Portrait of Sara Snogerup Linse

Benefits and constrains of covalency : the role of loop length in protein stability and ligand binding


  • Sara Linse
  • Eva Thulin
  • Hanna Nilsson
  • Johannes Stigler

Summary, in English

Protein folding is governed by non-covalent interactions under the benefits and constraints of the covalent linkage of the backbone chain. In the current work we investigate the influence of loop length variation on the free energies of folding and ligand binding in a small globular single-domain protein containing two EF-hand subdomains—calbindin D9k. We introduce a linker extension between the subdomains and vary its length between 1 to 16 glycine residues. We find a close to linear relationship between the linker length and the free energy of folding of the Ca2+-free protein. In contrast, the linker length has only a marginal effect on the Ca2+ affinity and cooperativity. The variant with a single-glycine extension displays slightly increased Ca2+ affinity, suggesting that the slightly extended linker allows optimized packing of the Ca2+-bound state. For the extreme case of disconnected subdomains, Ca2+ binding becomes coupled to folding and assembly. Still, a high affinity between the EF-hands causes the non-covalent pair to retain a relatively high apparent Ca2+ affinity. Our results imply that loop length variation could be an evolutionary option for modulating properties such as protein stability and turnover without compromising the energetics of the specific function of the protein.


  • Biochemistry and Structural Biology
  • MultiPark: Multidisciplinary research focused on Parkinson´s disease
  • NanoLund: Center for Nanoscience
  • Biophysical Chemistry

Publishing year





Scientific Reports





Document type

Journal article


Nature Publishing Group


  • Biochemistry and Molecular Biology




  • ISSN: 2045-2322