
Sara Linse
Professor

Direct measurement of lipid membrane disruption connects kinetics and toxicity of Aβ42 aggregation
Author
Summary, in English
The formation of amyloid deposits in human tissues is a defining feature of more than 50 medical disorders, including Alzheimer’s disease. Strong genetic and histological evidence links these conditions to the process of protein aggregation, yet it has remained challenging to identify a definitive connection between aggregation and pathogenicity. Using time-resolved fluorescence microscopy of individual synthetic vesicles, we show for the Aβ42 peptide implicated in Alzheimer’s disease that the disruption of lipid bilayers correlates linearly with the time course of the levels of transient oligomers generated through secondary nucleation. These findings indicate a specific role of oligomers generated through the catalytic action of fibrillar species during the protein aggregation process in driving deleterious biological function and establish a direct causative connection between amyloid formation and its pathological effects.
Department/s
- Biochemistry and Structural Biology
- MultiPark: Multidisciplinary research focused on Parkinson´s disease
- NanoLund: Center for Nanoscience
Publishing year
2020-10
Language
English
Pages
886-891
Publication/Series
Nature Structural and Molecular Biology
Volume
27
Issue
10
Document type
Journal article
Publisher
Nature Publishing Group
Topic
- Cell and Molecular Biology
Status
Published
ISBN/ISSN/Other
- ISSN: 1545-9993