
Sara Linse
Professor

Size-Dependent Effects of Nanoparticles on Enzymes in the Blood Coagulation Cascade.
Author
Summary, in English
Nanoparticles (NPs) are increasingly used in diagnostic and drug delivery. After entering the bloodstream, a protein corona will form around NPs. The size and curvature of NPs is one of the major characteristics affecting the composition of bound protein in the corona. Key initiators of the intrinsic pathway of blood coagulation, the contact activation complex, (Kallikrein, Factor XII, and high molecular weight Kininogen) have previously been identified on NPs surfaces. We show that the functional impact of carboxyl-modified polystyrene NPs on these initiators of the intrinsic pathway is size dependent. NPs with high curvature affect the enzymatic activity differently from NPs with low curvature. The size dependency is evident in full blood plasma as well as in solutions of single coagulation factors. NPs induce significant alteration of the enzymatic activity in a size-dependent manner, and enzyme kinetics studies show a critical role for NPs surface area and curvature.
Department/s
- Division of Occupational and Environmental Medicine, Lund University
- Clinical Chemistry, Malmö
- Biochemistry and Structural Biology
Publishing year
2014
Language
English
Pages
4736-4744
Publication/Series
Nano Letters
Volume
14
Issue
8
Links
Document type
Journal article
Publisher
The American Chemical Society (ACS)
Topic
- Nano Technology
Status
Published
Research group
- Clinical Chemistry, Malmö
ISBN/ISSN/Other
- ISSN: 1530-6992