The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Sara Snogerup Linse

Sara Linse

Professor

Portrait of Sara Snogerup Linse

Revealing Well-Defined Soluble States during Amyloid Fibril Formation by Multilinear Analysis of NMR Diffusion Data

Author

  • Kristine Steen Jensen
  • Sara Linse
  • Mathias Nilsson
  • Mikael Akke
  • Anders Malmendal

Summary, in English

Amyloid fibril formation is a hallmark of neurodegenerative disease caused by protein aggregation. Oligomeric protein states that arise during the process of fibril formation often coexist with mature fibrils and are known to cause cell death in disease model systems. Progress in this field depends critically on development of analytical methods that can provide information about the mechanisms and species involved in oligomerization and fibril formation. Here, we demonstrate how the powerful combination of diffusion NMR and multilinear data analysis can efficiently disentangle the number of involved species, their kinetic rates of formation or disappearance, spectral contributions, and diffusion coefficients, even without prior knowledge of the time evolution of the process or chemical shift assignments of the various species. Using this method we identify oligomeric species that form transiently during aggregation of human superoxide dismutase 1 (SOD1), which is known to form misfolded aggregates in patients with amyotrophic lateral sclerosis. Specifically, over a time course of 42 days, during which SOD1 fibrils form, we detect the disappearance of the native monomeric species, formation of a partially unfolded intermediate in the dimer to tetramer size range, subsequent formation of a distinct similarly sized species that dominates the final spectrum detected by solution NMR, and concomitant appearance of small peptide fragments.

Department/s

  • Biophysical Chemistry
  • Center for Molecular Protein Science
  • Biochemistry and Structural Biology
  • MultiPark: Multidisciplinary research focused on Parkinson´s disease
  • NanoLund: Center for Nanoscience

Publishing year

2019-11-27

Language

English

Pages

18649-18652

Publication/Series

Journal of the American Chemical Society

Volume

141

Issue

47

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biophysics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0002-7863