
Sara Linse
Professor

Calmodulin complexes with brain and muscle creatine kinase peptides
Author
Summary, in English
Calmodulin (CaM) is a ubiquitous Ca2+ sensing protein that binds to and modulates numerous target proteins and enzymes during cellular signaling processes. A large number of CaM-target complexes have been identified and structurally characterized, revealing a wide diversity of CaM-binding modes. A newly identified target is creatine kinase (CK), a central enzyme in cellular energy homeostasis. This study reports two high-resolution X-ray structures, determined to 1.24 Å and 1.43 Å resolution, of calmodulin in complex with peptides from human brain and muscle CK, respectively. Both complexes adopt a rare extended binding mode with an observed stoichiometry of 1:2 CaM:peptide, confirmed by isothermal titration calorimetry, suggesting that each CaM domain independently binds one CK peptide in a Ca2+-depended manner. While the overall binding mode is similar between the structures with muscle or brain-type CK peptides, the most significant difference is the opposite binding orientation of the peptides in the N-terminal domain. This may extrapolate into distinct binding modes and regulation of the full-length CK isoforms. The structural insights gained in this study strengthen the link between cellular energy homeostasis and Ca2+-mediated cell signaling and may shed light on ways by which cells can ‘fine tune’ their energy levels to match the spatial and temporal demands.
Department/s
- Biochemistry and Structural Biology
- MultiPark: Multidisciplinary research focused on Parkinson´s disease
- NanoLund: Center for Nanoscience
Publishing year
2021
Language
English
Pages
121-132
Publication/Series
Current Research in Structural Biology
Volume
3
Document type
Journal article
Publisher
Elsevier
Topic
- Biological Sciences
Keywords
- Calcium signaling
- Calmodulin X-ray structure
- Cellular energy metabolism
- Enzyme regulation
- Isothermal titration calorimetry
Status
Published
ISBN/ISSN/Other
- ISSN: 2665-928X