The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Sara Snogerup Linse

Sara Linse

Professor

Portrait of Sara Snogerup Linse

Protein GB1 Folding and Assembly from Structural Elements.

Author

  • Mikael Bauer
  • Wei-Feng Xue
  • Sara Linse

Summary, in English

Folding of the Protein G B1 domain (PGB1) shifts with increasing salt concentration from a cooperative assembly of inherently unstructured subdomains to an assembly of partly pre-folded structures. The salt-dependence of pre-folding contributes to the stability minimum observed at physiological salt conditions. Our conclusions are based on a study in which the reconstitution of PGB1 from two fragments was studied as a function of salt concentrations and temperature using circular dichroism spectroscopy. Salt was found to induce an increase in beta-hairpin structure for the C-terminal fragment (residues 41 - 56), whereas no major salt effect on structure was observed for the isolated N-terminal fragment (residues 1 - 41). In line with the increasing evidence on the interrelation between fragment complementation and stability of the corresponding intact protein, we also find that salt effects on reconstitution can be predicted from salt dependence of the stability of the intact protein. Our data show that our variant (which has the mutations T2Q, N8D, N37D and reconstitutes in a manner similar to the wild type) displays the lowest equilibrium association constant around physiological salt concentration, with higher affinity observed both at lower and higher salt concentration. This corroborates the salt effects on the stability towards denaturation of the intact protein, for which the stability at physiological salt is lower compared to both lower and higher salt concentrations. Hence we conclude that reconstitution reports on molecular factors that govern the native states of proteins.

Department/s

  • Biophysical Chemistry

Publishing year

2009

Language

English

Pages

1552-1566

Publication/Series

International Journal of Molecular Sciences

Volume

10

Issue

4

Document type

Journal article

Publisher

MDPI AG

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1422-0067