The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Stephanie Reimann

Stephanie Reimann

Professor

Portrait of Stephanie Reimann

Droplet-superfluid compounds in binary bosonic mixtures

Author

  • M. Nilsson Tengstrand
  • S. M. Reimann

Summary, in English

While quantum fluctuations in binary mixtures of bosonic atoms with short-range interactions can lead to the formation of a self-bound droplet, for equal intracomponent interactions but an unequal number of atoms in the two components, there is an excess part that cannot bind to the droplet. Imposing confinement, as here through periodic boundary conditions in a one-dimensional setting, the droplet becomes amalgamated with a residual condensate. The rotational properties of this compound system reveal simultaneous rigid-body and superfluid behavior in the ground state and uncover that the residual condensate can carry angular momentum even in the absence of vorticity. In contradiction to the intuitive idea that the superfluid fraction of the system would be entirely made up of the excess atoms not bound by the droplet, we find evidence that this fraction is higher than what one would expect in such a picture. Our findings are corroborated by an analysis of the elementary excitations in the system, and shed new light on the coexistence of localization and superfluidity.

Department/s

  • Mathematical Physics
  • NanoLund: Center for Nanoscience

Publishing year

2022-03

Language

English

Publication/Series

Physical Review A

Volume

105

Issue

3

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2469-9926