The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Stephanie Reimann

Stephanie Reimann

Professor

Portrait of Stephanie Reimann

Electronic structure of quantum dots

Author

  • Stephanie Reimann
  • M Manninen

Summary, in English

The properties of quasi-two-dimensional semiconductor quantum dots are reviewed. Experimental techniques for measuring the electronic shell structure and the effect of magnetic fields are briefly described. The electronic structure is analyzed in terms of simple single-particle models, density-functional theory, and "exact" diagonalization methods. The spontaneous magnetization due to Hund's rule, spin-density wave states, and electron localization are addressed. As a function of the magnetic field, the electronic structure goes through several phases with qualitatively different properties. The formation of the so-called maximum-density droplet and its edge reconstruction is discussed, and the regime of strong magnetic fields in finite dot is examined. In addition, quasi-one-dimensional rings, deformed dots, and dot molecules are considered.

Department/s

  • Mathematical Physics

Publishing year

2002

Language

English

Pages

1283-1342

Publication/Series

Reviews of Modern Physics

Volume

74

Issue

4

Document type

Journal article review

Publisher

American Physical Society

Topic

  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 0034-6861