
Stephanie Reimann
Professor

Correlation and spin polarization in quantum dots: Local spin density functional theory revisited
Author
Summary, in English
Using quantum dot artificial atoms as a simple toy model, we reflect on the question of whether spin density functional theory (SDFT) can accurately describe correlation effects in low-dimensional fermion systems. Different expressions for the local density approximation of the exchange-correlation energy for the two-dimensional electron gas, such as the much-used functional of Tanatar and Ceperley, and the recent suggestion by Attaccalite et al., are compared with the results of a numerical diagonalization of the many-body Hamiltonian matrix in the limit of small electron numbers. For systems with degeneracies, as shown in the present work for the example of a spin triplet with S = 1, the direct comparison with configuration interaction (Cl) methods demonstrates that the spin representation of SDFT may, under certain circumstances, produce artificial energy splittings between states that belong to the same spin multiplet. For a singlet ground state with S = S = 0, however, the correlation functions of the Cl solutions confirm the spin-density wave states found earlier within the SDFT method.
Department/s
- Mathematical Physics
Publishing year
2005
Language
English
Pages
817-825
Publication/Series
International Journal of Quantum Chemistry
Volume
105
Issue
6
Document type
Journal article
Publisher
John Wiley & Sons Inc.
Topic
- Physical Sciences
Keywords
- spin symmetry
- calculations
- configuration interaction
- quantum dots
- density functional method
- spin-density waves
Status
Published
ISBN/ISSN/Other
- ISSN: 0020-7608