The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tommy Cedervall; Photo: Kennet Ruona

Tommy Cedervall

Associate Professor, Coordinator Nanosafety

Portrait of Tommy Cedervall; Photo: Kennet Ruona

Temperature-dependent structure and function of group A streptococcal M proteins

Author

  • Tommy Cedervall

Summary, in English

Temperature-dependent structure and function of group A streptococcal M proteins.This thesis describes the temperature-dependent structure of the members in the group A streptococcal M protein family. M proteins are cell-surface proteins that are important for the bacterial virulence and bind to a diverse set of human plasma proteins. The proteins are dimeric coiled-coil molecules, but temperature unstable, i.e. at 37°C the isolated proteins are monomeric molecules and to a great extent unfolded. It was shown that the Ig-binding by group A streptococcal strains was weaker at 37°C than 20°C. The Ig-binding by isolated M proteins and M-like proteins was, likewise, weaker at 37°C than 20°C. In contrast, the fibrinogen-binding by bacteria was equally strong at 20°C and 37°C, while the fibrinogen-binding by isolated protein was temperature-dependent. The M protein can be divided into class A and C proteins depending on whether centrally located repeats are A- or C-repeats. The coiled-coil structure of a fibrinogen-binding class A protein, Mrp4, was found to be temperature stable with strong fibrinogen-binding also at 37°C. The class A proteins have a higher percentage of hydrophobic amino acids in residues constituting the hydrophobic core in coiled-coil proteins than class C proteins. This disparity was suggested to explain the different temperature stabilities in class A and C proteins. The temperature stability also varies among class C proteins and higher temperature stability is accompanied by higher percentage hydrophobic amino acids in the hydrophobic core. The unfolding of M proteins indicated one to three structural regions. Furthermore, near-UV circular dichroism studies indicated a lower temperature stability of the N-terminal half of protein H, a class C proteins, compared to the overall helical structure. In opposite, the binding of IgG by protein H stabilised the N-terminal half to a higher extent than the overall helical structure.

Department/s

  • Department of Experimental Medical Science

Publishing year

1999

Language

English

Document type

Dissertation

Publisher

Tommy Cedervall, Nobelvägen 60F, 214 33 MALMÖ, Sweden

Topic

  • Basic Medicine

Keywords

  • Microbiology
  • plasma protein
  • fibrinogen
  • temperature
  • hydrophobicity
  • coiled-coil
  • Ig-binding
  • M protein
  • group A streptococcus
  • bacteriology
  • virology
  • mycology
  • Mikrobiologi
  • bakteriologi
  • virologi
  • mykologi

Status

Published

Supervisor

  • [unknown] [unknown]

ISBN/ISSN/Other

  • ISBN: 91-628-3435-5
  • ISRN: LUMEDW/MECM-99/1025-SE

Defence date

26 April 1999

Defence time

10:15

Defence place

7Chemical Center, Lund

Opponent

  • Mats Paulsson