The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tommy Nylander. Photo: Kennet Ruona

Tommy Nylander

Professor

Portrait of Tommy Nylander. Photo: Kennet Ruona

Adsorption of cationic cellulose derivatives/anionic surfactant complexes onto solid surfaces. I. Silica surfaces

Author

  • Eiji Terada
  • Yulia Samoshina
  • Tommy Nylander
  • Björn Lindman

Summary, in English

The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behaviors of cationic hydroxyethyl celluloses (Polymer JR-125, JR-400, and JR-30M) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at silica surfaces in the presence of a 10 mM NaCl solution has been investigated by null ellipsometry. The adsorbed amount of LM-200 is found to be considerably larger than adsorbed amounts of other polymers. The rate of adsorption for the LM-200 is also lower than that for the Polymer JR series under comparable conditions. Electrostatic interaction is found to be the major driving force for the adsorption. The effect of SDS on adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and additions of SDS to the preadsorbed polymer layers. In all cases, associative binding of the surfactant to the polymer seems to control interfacial behavior, which depends on the surfactant concentration. Maximum adsorption was obtained at the surfactant concentration below the phase separation region, and the complex desorbed from the surface at a high SDS concentration above the critical micelle concentration. The reversibility of the polymer/SDS complexes adsorption upon rinsing with NaCl solutions was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by salt solutions, the adsorbed amount increased sharply with precipitation of the complex. A larger amount of the JR-400/SDS complex precipitated during the rinsing process seemed to adsorb to a larger extent to silica than the corresponding LM-200/SDS complex.

Department/s

  • Physical Chemistry

Publishing year

2004

Language

English

Pages

1753-1762

Publication/Series

Langmuir

Volume

20

Issue

5

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463