The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tommy Nylander. Photo: Kennet Ruona

Tommy Nylander

Professor

Portrait of Tommy Nylander. Photo: Kennet Ruona

Ellipsometric characterization of ethylene oxide-butylene oxide diblock copolymer adsorption at the air-water interface

Author

  • B R Blomqvist
  • Jan-Willem Benjamins
  • Tommy Nylander
  • T Arnebrant

Summary, in English

Ellipsometry was used to determine the adsorbed layer thickness (d) and the surface excess (adsorbed amount, Gamma) of a nonionic diblock copolymer, E106B16, of poly(ethylene oxide) (E) and poly(butylene oxide) (13) at the air-water interface. The results were obtained (i) by the conventional ellipsometric evaluation procedure using the change of both ellipsometric angles, T and A and (ii) by using the change of A only and assuming values of the layer thickness. It was demonstrated that the calculated surface excesses from the different methods were in close agreement, independent of the evaluation procedure, with a plateau adsorption of about 2.5 mg/m(2) (400 A(2)/molecule). Furthermore, the amount of E106B16 adsorbed at the air-water interface was found to be almost identical to that adsorbed from aqueous solution onto a hydrophobic solid surface. In addition, the possibility to use combined measurements with H2O or D2O as substrates to calculate values of d and F was investigated and discussed. We also briefly discuss within which limits the Gibbs equation can be used to determine the surface excess of polydisperse block copolymers.

Department/s

  • Physical Chemistry

Publishing year

2005

Language

English

Pages

5061-5068

Publication/Series

Langmuir

Volume

21

Issue

11

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 0743-7463