The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tommy Nylander. Photo: Kennet Ruona

Tommy Nylander

Professor

Portrait of Tommy Nylander. Photo: Kennet Ruona

Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate at the Air-Water Interface Studied by Neutron Reflectometry

Author

  • Richard A. Campbell
  • Marianna Yanez
  • Anna Angus-Smyth
  • Tommy Nylander
  • Imre Varga

Summary, in English

We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates.

Department/s

  • Physical Chemistry

Publishing year

2011

Language

English

Pages

15202-15213

Publication/Series

The Journal of Physical Chemistry Part B

Volume

115

Issue

51

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5207