The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tönu Pullerits; Photo: Kennet Ruona

Tönu Pullerits

Professor

Portrait of Tönu Pullerits; Photo: Kennet Ruona

Microscopic morphology independence in linear absorption cross-section of CsPbBr3 nanocrystalsMicroscopic morphology independence in linear absorption cross-section of CsPbBr3 nanocrystals

Author

  • Fengying Zhang
  • Yuchen Liu
  • Shiqian Wei
  • Junsheng Chen
  • Ying Zhou
  • Rongxing He
  • Tõnu Pullerits
  • Kaibo Zheng

Summary, in English

Multiple morphologies of colloidal perovskite nanocrystals (NCs) diversify their optical and electronic properties. Among them, the linear absorption cross-section (σ) is a primary parameter to determine their intrinsic photophysical features, and consequently, application potential. Herein, three morphologies of all-inorganic hybrid colloidal perovskite CsPbBr3 NCs, nanocubes (NBs), nanoplatelets (NLs), and nanowires (NWs), were targeted, and their linear σ values were obtained through femtosecond transient absorption (TA) spectroscopy analysis. At high excitation energy well above the bandgap, the σ per particle of all CsPbBr3 NCs linearly increased with the particle volume (VNC) regardless of the morphology with the value of σ400 = 9.45 × 104 cm−1 × VNC (cm2). Density functional theory (DFT) calculation confirmed the negligible influence of shapes on the optical selection rules. The Einstein spontaneous emission coefficients calculated from the σ values define the intrinsic radiative recombination rate. However, reduced size dependence is observed when the excitation energy is close to the bandgap (i.e., at 460 nm) with the value of σ460 = 2.82 × 108 cm0.65 × (VNC)0.45 (cm2). This should be ascribed to the discrete energy levels as well as lower density of states close to the band edge for perovskite NCs. These results provide in-depth insight into the optical characteristics for perovskite NCs.

Department/s

  • Chemical Physics
  • NanoLund: Center for Nanoscience
  • eSSENCE: The e-Science Collaboration

Publishing year

2021-06-01

Language

English

Pages

1418-1426

Publication/Series

SCIENCE CHINA Materials

Volume

64

Issue

6

Document type

Journal article

Publisher

Science in China Press

Topic

  • Physical Chemistry
  • Condensed Matter Physics

Keywords

  • absorption cross-section
  • density functional theory
  • multiple morphologies
  • radiative recombination
  • transient absorption spectroscopy

Status

Published

ISBN/ISSN/Other

  • ISSN: 2095-8226