The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Portrait of Tönu Pullerits; Photo: Kennet Ruona

Tönu Pullerits

Professor

Portrait of Tönu Pullerits; Photo: Kennet Ruona

Enhanced Size Selection in Two-Photon Excitation for CsPbBr3 Perovskite Nanocrystals

Author

  • Junsheng Chen
  • Pavel Chábera
  • Torbjörn Pascher
  • Maria E. Messing
  • Richard Schaller
  • Sophie Canton
  • Kaibo Zheng
  • Tõnu Pullerits

Summary, in English

Cesium lead bromide (CsPbBr3) perovskite nanocrystals (NCs), with large two-photon absorption (TPA) cross-section and bright photoluminescence (PL), have been demonstrated as stable two-photon-pumped lasing medium. With two-photon excitation, red-shifted PL spectrum and increased PL lifetime is observed compared with one-photon excitation. We have investigated the origin of such difference using time-resolved laser spectroscopies. We ascribe the difference to the enhanced size selection of NCs by two-photon excitation. Because of inherent nonlinearity, the size dependence of absorption cross-section under TPA is stronger. Consequently, larger size NCs are preferably excited, leading to longer excited-state lifetime and red-shifted PL emission. In a broad view, the enhanced size selection in two-photon excitation of CsPbBr3 NCs is likely a general feature of the perovskite NCs and can be tuned via NC size distribution to influence their performance within NC-based nonlinear optical materials and devices.

Department/s

  • Chemical Physics
  • NanoLund: Center for Nanoscience
  • Solid State Physics

Publishing year

2017-10-19

Language

English

Pages

5119-5124

Publication/Series

Journal of Physical Chemistry Letters

Volume

8

Issue

20

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry
  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1948-7185